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Decoherence and quantum error correction

B y P. L. Knight, M. B. Plenio and V. Vedral
Department of Optics, The Blackett Laboratory,

Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK

We discuss the effects of decoherence on fault-tolerant quantum computation and
how it leads to accuracy thresholds required before arbitrarily computations can be
performed. We examine the feasibility of achieving these thresholds in an ion trap
realization when spontaneous emission is taken into account.

1. Introduction

Since Shor’s discovery (Shor 1994; Ekert et al. 1996) of an algorithm that allows the
factorization of a large number by a quantum computer in polynomial time instead of
an exponential time as in classical computing, interest in the practical realization of
a quantum computer has been much enhanced. Recent advances in the preparation
and manipulation of single ions as well as the engineering of pre-selected cavity light
fields suggests that quantum optics may well be that field of physics promising the
first experimental realization of a quantum computer.

The realization of a quantum computer in a linear ion trap seemed very promising
as it was thought that decoherence could be suppressed sufficiently to preserve the
superpositions necessary for quantum computation. Indeed, a single quantum gate
in such an ion trap has been realized by Monroe et al. (1995). Nevertheless, the error
rate in this experiment from technical sources was too high to allow the realization of
extended quantum networks. However, there remains the question whether overcom-
ing technical problems will be sufficient to realize practically useful computations.
Here we address the problem of so called threshold accuracy in quantum computa-
tion (Knill et al. 1996; Aharonov & Ben-Or 1996). Arbitrarily complicated (long)
quantum computations can be performed once the error rate of a quantum gate can
be pushed below a certain threshold. We will discuss whether the required thresholds
presented in Knill et al. (1996) and Aharonov & Ben-Or (1996) can be achieved or
if spontaneous emission rules this out.

2. Accuracy thresholds to quantum computation

An input to a quantum computer is a string of quantum bits called qubits. A
quantum computer is viewed as consisting of two main parts: quantum gates and
quantum wires. By basic quantum gates we mean any set of quantum gates which
can perform any desired quantum computation. A universal quantum gate is the one
whose combination can be used to simulate any other quantum gate. A quantum
wire is used as a representation of that part of computation of any qubit where the
evolution is a simple identity operation (i.e. no gate operates on the qubit), as well
as the time the qubit spends during the gate operation.
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There are two main types of errors occurring during a quantum computation pro-
cess. The first type are decoherence and spontaneous emission errors due to the
interaction of qubits with the external environment. These errors are represented as
unitary evolutions of the joint qubit–environment system after which the environ-
ment is traced out. This transforms an initially pure state into a statistical mixture
of qubits. The most general interaction of this kind can be represented by positive
operator valued measure (POVM) type operators acting on the qubit only,

ρ→
∑

AiρA
†
i , (2.1)

where
∑
A†iAi = I. This is an incoherent type of error.

The second type of error is an error in quantum gates where the qubit is ‘over
rotated’ by a certain small amount. This is a coherent type of error which is simply
represented by a unitary transformation on the qubit ρ → ViρV

†
i , where the ‘true’

transformation should have been ρ → UiρU
†
i . The difference between U and V sig-

nifies the size of the error. This type of error can be represented as a special case of
POVM operators in equation (2.1), but the error it produces is different in nature
to incoherent error.

3. Fault-tolerant computation

The idea of fault tolerant quantum computation (Shor 1994, 1995) is to encode
the qubits in such a way that the encoding does not introduce more errors than
previously were present. If the error stays at the same level, we then keep performing
error correction until the error has decreased in magnitude (Shor 1995; DiVincenzo
& Shor 1996; Plenio et al. 1997). The present state of the art requires 5–10 qubits
to encode a single qubit against a single error. It is the iterative application ‘in
depth’ of the encoding that will enable us to reduce error to an arbitrarily small
level providing it is below a certain level to start with. In other words, we will be
encoding the encoding bits. We list the assumptions that we use below.

1. Qubits errors occur independently.
2. There are three basic incoherent errors which occur at the same rate (isotropic

decay is assumed for simplicity). In the Born-Markov approximation, the master
equation for a single qubit is of the Lindblad form. Three basic single qubit errors
are represented by the Pauli spin matrices. We assume that the probability that
there is no error in n qubits after time t is

pne = e−nΓt (3.1)

where Γ = 3γ is the decay rate for all the errors together. The probability that there
is at least one error is therefore pe = 1− pne. We define η = Γ t henceforth.

3. Incoherent and coherent errors are independent.
4. Errors are treated ‘classically’. We assume that the coherent error per gate is

ε (no error is 1 − ε) in a completely classical fashion; this implies that either the
qubit was correctly rotated with probability 1 − ε or it was over-rotated with the
probability ε.

5. Basic gates are all two-qubit gates. It is true that almost all two-bit gates are
universal. Shor (1994), however, also used a Toffoli (three-bit) gate for his fault-
tolerant computation, but this does not change our argument.

6. The number of gates needed to encode and fault tolerantly correct a basic gate
are of the order O(l2), where l is the overall number of qubits (Shor 1996).
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For stable quantum computation, obviously, we require that the probability of
error after the fault-tolerantly encoded basic gate is of higher order (i.e. the error
is smaller) than the probability of error after the unencoded gate (that is the whole
point of encoding and fault-tolerant error correction!). From this we derive the bound
on the size of allowed errors in the wires and in the gates. When we encode the
encoding bits again, we reduce the error further and can reduce the error arbitrarily
for an arbitrarily long computation. Therefore, given certain initial limits on the
error rate in the gates and wires we can stabilize any computation to a desirably
small error rate, given an unlimited amount of time. The probability of having any
of the three basic errors in the first as well as in the second wire is η, giving the
overall first-order wire error of 2η. The error in the gate is ε. We assume that the
overall error of the whole basic gate is less than or equal to 2η+ ε. Suppose that the
basic gate is now encoded fault tolerantly against a single error of any kind, using l
qubits. Then the overall second-order error is at the end of the gate,

η∗(η, ε, l) = (1− 1
2 l(l − 1)l4η2)l2ε+ 1

2 l(l − 1)l4η2(1− l2ε), (3.2)

i.e. equal to having error in the wires (this time in second order) and not in the gates
plus having error in the gates and not in the wires. The term 1

2 l(l − 1) comes from
choosing two out of l gates to err and the factor l4 derives from the use of l2 gates,
so that the error is transformed according to η → l2η and is of second order. We
require that the fault tolerant error correction reduces the error. Hence

(1− 1
2 l(l − 1)l4η2)l2ε+ 1

2 l(l − 1)l4η2(1− ε) 6 2η + ε. (3.3)

As the left-hand side is greater than η, we simplify the above without a greater loss
in generality to

(1− 1
2 l(l − 1)l4η2)l2ε+ 1

2 l(l − 1)l4η2(1− ε) 6 η. (3.4)

The solutions to the equation derived from the above are

η± =
1±√1− 2(l8ε− 2l10ε2)

(l6 − 2l8ε)
. (3.5)

We require that η ∈ R (and that 0 6 η 6 1
2) so that we have the following two

regimes of error: (1) 0 < η < η+ and e 6 e− and (2) 0 < η < η− and e > e+, where
ε± = (1/2l2)(1±√1− 2l−6).

The output of the first encoded basic gate is fed into the next one (or part of the
output into one next basic gate and the rest into another next basic gate). It is evident
that if condition 1 holds, further encoding can only decrease the error. The residual
error not taken into account is ca. l3(l2η)3 = l9η3 (i.e. the second-order error is not
corrected by our encoding). In the worst case when ε = ε− ∼ l−8, we get η ∼ l−6,
which means that the residual uncorrected error is ca. l−9. This error can accumulate
over time if the computation is sufficiently long. However, the residual error after n in
depth encodings is l−O(n), which can made be arbitrarily small using sufficiently large
n. Unfortunately, in this case, the number of elementary gates needed for each new
encoding would square, i.e. the time of computation (ca. the number of elementary
gates) would increase exponentially. Whereas in theory any computation can be
performed with arbitrary accuracy given an initial η ∼ l−6 per gate, the time of
computation will grow as 1/(residual error). In the second case, however, η+ 6 0
and η− > 1

2 . Thus in the best case, when ε = ε+, η tends asymptotically to 1
2 . This

would imply that a qubit initially pure state, e.g. |0〉, would eventually evolve into a
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completely random mixture at the output, of the form 1
2(|0〉〈0| + |1〉〈1|). Therefore

under condition 2, the error rate is too big to allow any useful computation. However,
under condition 1, the stabilization of error is clearly accomplished.

4. The error rate in one quantum gate

We have seen how to estimate the accuracy threshold for quantum computation
and we have given the numbers that arise from more precise explicit constructions of
error correction schemes. We have seen that the incoherent error rate per quantum
gate should not be higher than around 10−6. In a more detailed analysis (Knill et
al. 1996), the execution of one quantum gate on an encoded qubit requires of the
order of N = 106 operations, which confirms our qualitative arguments. We now see
whether accuracies of that order can be achieved in a linear ion trap realization of
the quantum computer, using as qubits Zeeman sublevels. We emphasize that we
take into account only the spontaneous emission of the ions and assume all the other
errors have been eliminated.

We calculate the probability to suffer at least one spontaneous emission during the
implementation of N quantum gates (Plenio & Knight 1996, 1997). This probability
has to be smaller than unity. We represent the qubit by two Zeeman sublevels and use
Raman pulses to transfer population between the two states. For the time required
to perform N quantum gates, we find T = N8π∆2/Ω2

02, and for the probability for
a spontaneous emission from level 2, we find p2 = 8Γ22N/∆2. We have to take into
account the fact that the two-level approximation can break down. This leads to an
additional independent source of spontaneous emission via extraneous levels. One
finally obtains the probability to have a spontaneous emission from an extraneous
level

p3 =
80Γ 2

33π
2N2L

∆2
13βη

2

(
ω12

ω13

)3

. (4.1)

The total probability of a spontaneous emission is ptot = p2 + p3 and therefore the
error rate per quantum gate is

r =
ptot

N
=

√
320L
β

πΓ33

∆13η

(
ω12

ω13

)3/2

. (4.2)

We use the data for the ions given in Plenio & Knight (1997). If we assume η = 1,
β = 1 as well as (Knill et al. 1996) L = 7 and an optimistic N = 106, we see that
even for barium the probability for at least one emission is almost one. The explicit
values are for barium r = 0.44× 10−6, for mercury r = 9.26× 10−6 and for calcium
r = 2.03×10−6. This means that unless the encoding procedures given in Knill et al.
(1996) and Aharonov & Ben-Or (1996) can be improved substantially, the accuracy
threshold for quantum computation will not be achievable. Some progress in this
direction has been made recently (Steane 1997).

5. Conclusions

We have studied the impact of spontaneous emission on the practical applicability
of quantum computation in linear ion traps and especially the possibility of using
a quantum computer to factorize large numbers. We conclude that with present
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technology such a factorization will not be possible even if we employ sophisticated
methods of quantum error correction. We then investigated the minimal error rate
per quantum gate and compared it to recently established accuracy thresholds that
would, in principle, allow arbitrarily complicated quantum computations. We find
that the presently known thresholds cannot be achieved because of spontaneous
emission alone. Other sources of error would lead to even stronger limitations. We
conclude that new physical ideas are therefore necessary if the goal of practically
useful quantum computation is to be reached.
This work was supported by the European Community, the UK Engineering and Physical Sci-
ences Research Council, by a Feodor-Lynen grant of the Alexander von Humboldt Foundation
and by the Knight Trust.
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